Commit 0a5a3afa authored by Martino Bertoni's avatar Martino Bertoni 🌋
Browse files

added y_scrambling option to be used for validation only

parent 0d7241e0
......@@ -121,7 +121,8 @@ class Signaturizer(object):
def predict(self, molecules, destination=None, keytype='SMILES',
save_mfp=False, chunk_size=1000, batch_size=128):
save_mfp=False, chunk_size=1000, batch_size=128,
"""Predict signatures for given SMILES.
Perform signature prediction for input SMILES. We recommend that the
......@@ -133,8 +134,13 @@ class Signaturizer(object):
molecules(list): List of strings representing molecules. Can be
SMILES (by default) or InChI.
destination(str): File path where to save predictions.
keytype(str): Whether to interpret molecules as InChI or SMILES.
save_mfp(bool): if True and additional matrix with the Morgan
Fingerprint is saved.
chunk_size(int): Perform prediction on chunks of this size.
keytype(str): Wether to interpret molecules as InChI or SMILES.
batch_size(int): Batch size for prediction.
y_scramble(bool): Validation test scrambling the MFP before
results: `SignaturizerResult` class. The ordering of input SMILES
is preserved.
......@@ -204,6 +210,10 @@ class Signaturizer(object):
# stack input fingerprints and run signature predictor
sign0s = np.vstack(sign0s)
if y_scramble:
y_shuffle =np.arange(sign0s.shape[1])
sign0s = sign0s[:, y_shuffle]
preds = self.model.predict(tf.convert_to_tensor(sign0s, dtype=tf.float32),
# add NaN where SMILES conversion failed
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment